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Abstract— Prosthetic hands are important tools for improv-
ing the lives of upper limb amputees, yet most devices lack
the ability to provide a sense of touch back to the user.
Recent improvements have been made in electromyography
(EMG) prosthesis control as well as in biologically relevant
tactile sensors to provide sensory feedback to amputees through
nerve stimulation. However, sensory feedback has been designed
heuristically, which can lead to either unnatural sensations or
to excessive feedback that bothers the user. In this study, we
apply optimal control techniques to synthesize sensory feedback
to the user, and to synthesize the conversion from EMG to an
actuation command to the prosthesis. Specifically, we construct
a feedback control system architecture and solve the ., model
matching problem to make the closed-loop user-prosthetic
system to behave like a pre-specified ideal system in response to
elemental inputs (e.g. impulse, step, etc). We design feedback
controllers assuming that human and prosthetic components
behave in a linear fashion as a proof-of-concept, and the closed-
loop system is able to match ideal systems that are slow, fast and
that have both slow and fast dynamics (like healthy humans).

I. INTRODUCTION

Prosthetic hands are important tools for improving the
lives of upper limb amputees; however, most of these de-
vices lack the ability to feedback a sense of touch to the
user. Prosthesis users typically rely on visual feedback to
accomplish tasks with their devices. A more natural human-
prosthesis interface would allow the human to actuate the
prosthesis, and the prosthesis to in turn allow the human
to feel what the prosthetic hand touches. This is critical
for picking up, holding, or manipulating objects with their
prosthesis. In healthy hands, numerous mechanoreceptors
within the skin allow for our sense of touch and make up
the closed-loop tactile feedback system that provides us with
valuable information regarding our environment [1].

Recent improvements have been made in electromyogra-
phy (EMG) prosthesis control, specifically in pattern recog-
nition strategies [2], [3] more biologically relevant tactile
sensors [4], and even sensory feedback to amputees through
nerve stimulation [5], [6]. Although the technology used
to build prosthetic limbs continues to advance at a rapid
pace, there is still much to be done in order to make
the interface between a prosthesis and a user as natural
as possible. Researchers have proposed more biologically
relevant stimulation approaches for sensory feedback [5],
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[7] (Fig. 1), but one challenge is deciding when and how
to provide sensory feedback to a user. More specifically,
how that sensory perception is interpreted and ultimately
incorporated into the prosthesis control model of the user
is unknown. In healthy humans, touch information is used
to help refine motor movements to complete complex tasks
through continuous closed-loop feedback, but for upper
limb prosthesis users this type of completely natural and
seemingly automated behavior where motor commands are
linked to the input from the tactile signal, such as a reflex,
is not present.

In the case of sensory feedback to a user, there can be a
processing delay as the user attempts to interpret the informa-
tion. This processing delay is a concern in systems that rely
on sensory substitution to the user [8]. Although more natural
sensory feedback is possible through direct nerve electrical
stimulation [5], how this information is used for a feedback
control model is still unknown. The added cognitive load of
unnatural sensory feedback processing can cause the loss of
valuable seconds before a response is made compared to the
more natural reflex actions found in able-bodied individuals.
Excessive sensory feedback can also prove bothersome to
a prosthesis user when too many feedback mechanisms
are used simultaneously [9]. Thus, some midpoint between
prosthesis and user control must be reached in order to create
the ideal prosthesis-user system. Control theory offers an
interesting tool to meet this challenge.

Since prosthesis users often rely on visual information
while holding an object, it can be difficult to know how much
to augment grip force in order to pick up an object. This
uncertainty can lead to unintentional breakage or slippage
of objects. Previous work has shown that controllers can
be implemented to decrease the likelihood of object slip
or deformation by processing a force signal output by the
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Fig. 1. Overview of a closed-loop system for a prosthetic limb with
variable labels. Muscle activity (EMG) from an amputee is used by the
prosthesis controller to send movement commands to the prosthetic hand.
Tactile sensors on the prosthesis measure force during object grasping and
are used as feedback to the controller. Touch information can be conveyed
back to the amputee user in the form of sensory feedback from peripheral
nerve stimulation.
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prosthesis [10], [11]. For this type of control, both EMG
and tactile information are used by the prosthesis controller
to improve grasping.

Various control methods have already been implemented
to translate EMG signals into relevant inputs to a prosthesis
[2], [3]. However, designing a controller that both processes
EMG data to actuate the prosthesis and also provides sensory
feedback to the user based on prosthesis output still requires
investigation. Such a controller would allow for even more
natural control of a prosthesis by a user by taking into
account how sensory feedback influences the forward control
model implemented by the user, thus allowing the user to
“feel” the prosthesis like his/her own natural arm.

The goal of this work is to utilize control theory tech-
niques, specifically H,, model matching, to better under-
stand how combining forward control signals (EMG) from a
user and touch information, which is used as feedback to both
the user and the prosthesis controller, can enhance the ability
of an amputee to make more refined, natural movements with
their prosthetic limb.

II. METHODS
A. Closed-loop model of user-prosthetic system

We consider the closed-loop system with user and upper
limb prosthesis shown in Fig. 1. To generate an arm move-
ment with the prosthesis, the user creates an EMG signal by
activating his/her residual muscles, which is then processed
and converted into an actuating signal to the terminal device.
The prosthesis responds, and force signals are captured by
tactile sensors. These tactile signals are then fed into a two-
component controller: (i) the first component is a model that
translates the analog tactile signals into a relevant stimulation
pattern, which then (ii) gets sent to a stimulator which
activates the residual peripheral sensory nerves in the arm,
thus closing the loop.

We can represent this closed-loop system, with the human
in the loop, in a block diagram form as shown in the top blue
portion of Fig. 2. The bottom red portion represents an ideal
system T, that we wish the closed-loop system to mimic
(e.g. a healthy human). In the top portion of Fig. 2, r(t)
represents a reference trajectory that the subject wishes the
prosthesis to follow (likely generated in the parietal region
of the brain). This in turn will generate a response from the
user-prosthesis system, ¢(t), which is fed back into the first
controller, K, which represents the processor that converts
the tactile signals into a stimulation signal given by wu;. This
signal is then subtracted from r(t) to give z(t), which is a
stimulation signal for the user’s residual nerves. The subject,
H, responds to the stimulation to produce an EMG signal
which is converted by K5 into an actuating input to the
prosthesis, P.

We wish this closed-loop user-prosthetic system to behave
like a pre-specified ideal system T shown in red. That is, our
goal is to design K; and K> such that the H,, norm of the
error system, E(s) = Heor(s) — To(s), is minimized. Note
that Hcp, is the closed loop system from z to q and a function
of K1,K5,H, and P. H and P can be estimated based on
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Fig. 2. Block diagram of system, with variable labels and description for
each of the components. The blue portion of the diagram represents the
closed-loop system involving the human, prosthesis, and controller. The red
portion represents an ideal signal Tp which is fed into the loop in order to
test the validity of the controller.

data from experimental observations. More specifically, we
solve the following model matching problem for our user-
prosthetic system:

User-Prosthetic Model Matching Problem:
(K{,K3) =arg min ||Heop (K1, K2) — Tollm.,
K1,K2
(1

s.t. Hop, is stable.

Recall that the H,, norm of a multi-input multi-output
system is the supremum over all w of the maximum singular
value of the transfer function matrix o(Hep)(jw), ie.,

[|H||oo = sup o (H (jw)) 2

The H., norm of a multi-input multi-output system essen-

tially is the upper bound on the gain that the system can apply
to an input with finite energy. In our case, the H, controllers
are the K, and K5 that minimize the error between the
actual and ideal system, as represented in Equation (1).
This model matching problem is solved via the Youla
parametrization [14], and is implemented in MATLAB’s
control toolbox. To use the H, controller design capabilities
of MATLAB, we first rearranged the block diagram shown in
Fig. 2 to produce the linear fractional transformation (LFT)
form as shown in Fig. 3. The LFT, which is expanded in
Fig. 4, is a convenient and powerful formulation in control
system analysis and controller synthesis [12]. In the LFT,
the controller components are separated from the remainder
of the system, G. In our example, G has three inputs: r
and u = [u; wus]”; and three outputs: e and y = [¢ w]”.
The multi-input multi-output controller, /&, has two inputs
y = [¢ w]T and two outputs u = [u; uz]7.

B. State-space model for G

We implement MATLAB’s function hinfstruct to help
solve our model matching problem. To do so, we first derive
a state-space representation of G = ss(A, B,C, D) given
state-space representations of H, P, and Tj. Using the
interconnection shown in Fig. 4, it is possible to derive the
state-space model of G, from the state-space models of Tj,
P, and H:

Ty : @1, = AryxTy + Bry1
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v = Cr,21, + Dor

P: zp = Apxzp + Bpus
q=Cpzp+ Dpus

H: g = Agzg + Brz
w=Cygxy + Dnz

From Fig. 4, we use the relations e = v—gq and z = r—uy, as
well as the state-space models introduced above, to produce
the following equations:

e=v—q=Cryzr, + Dryr — (Cpzp + Dpuy)
w=Cgzxyg +Dyz=Cyxyg + DH(T’ — ul)

Our goal is to rearrange these equations to produce a state-
space model for G given by the following:

G: g = I:i/‘T() Tp CL’H]T = Agzg + Bg [’r‘ U1 UQ]T
[e ¢ w]T =Cgzc+Da[r w u2]T
where z is the closed-loop state vector, [e ¢ w]T is the

T . .
output vector, and [r Uy ug] is the input vector. Then,
we can write the state space model for G:

Ary 0 0 Br, 0 0
Ac=1] 0 Ap 0,Ba=1| 0 0 By
0 0 Ag By —Bg 0

Cr, —Cp 0 Dr, 0 —Dp

Cag = 0 Cp 0 |,Dg= 0 0 Dp
0 0 Ch Dy —Dg 0

It is important to note that K is a diagonal controller with
K; and K, along the diagonal. This imposes structure on
our model matching problem.

ITII. RESULTS AND DISCUSSION

The MATLAB command hinfstruct can be used to min-
imize the H,, norm of a system by tuning the two con-
trollers with variable parameters along the diagonal of K. To
demonstrate performance of our framework on LTI systems,
we specified transfer functions for H, P, and Tj to tune
two second-order K1 and K2. The two optimal controllers
can then be implemented to create the closed-loop transfer
function from r to ¢, Hor(s) = %.

For this proof-of-concept study, we approximated the hu-
man block H as a first-order transfer function with a response
time of 70-100 ms. This specification and assumption for
H represent a reflex pathway for slip prevention during
grasping [13]. The prosthesis block P is also represented
with a first-order transfer function, based on previous work
[15], with a slower response time than that of the human

. . 1 50
transfer function. In particular, we let P = 5, H = 5.

T e

=

Fig. 3. Configuration of block diagram for use of Ho synthesis commands
in MATLAB. The block K contains controllers K1 and K3 in a diagonal
structure, and the block G contains information from P, H, and a user-
specified Tp. The input to this system is the desired reference signal, and
the output is the error between the output of Tp and the output of C'L.
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Fig. 4. Expanded Block Diagram. Here, the block diagram from Fig. 2
has been rearranged to fit the form specified in Fig. 3. This block diagram
is used to determine the state space model of the G, thus preparing to use
H-infinity synthesis.

To test our code, we used three different 7 transfer
functions that are first and second order systems:

Tfast _ 100

O 7 s+100 ®)
10
Tslow _ 4
0 ST 10 )
Tofast—slow _ 1000 (5)

(s + 10)(s + 100)

Recall, the first order systems do not oscillate, while second

order systems may oscillate. These three examples were
chosen because Equations (3) and (4) have fast and slow
response times, respectively; and Equation (5) is a second
order system that exhibits both slow and fast dynamics. Here,
having a fast response time means that the system will react
quickly to an input, and a slower response time means the
system takes more time to react. The K| and K3 produced
by each 7y are recorded in Table I. These K{ and K3
were then used to calculate the optimal closed-loop transfer
functions H¢,; for each Tp.

Equations (3) and (5) produce H¢; with outputs shown
in Fig. 5. The signals uwj and u3, corresponding to the
electrical stimulation signal for the user and the actuation
signal, respectively, are given in Fig. 6. These optimal control
inputs were calculated by finding the transfer functions from
r to up and r to ug from Fig. 2.

In order to test the accuracy of our method for various
types of Ty, we computed the respective error norms for
each closed-loop error system as shown in Fig. 7. Our results
show that our H, framework is more accurate at matching
slower Tj, functions than faster ones, and is able to match
second-order transfer functions more accurately than first-
order transfer functions. This is intuitive as a slow system is
less demanding than a fast system and a second order system
allows for more flexibility in control design. The 2-norms of
the controller-generated signals w; and uo for step, impulse,
and sinusoid inputs are shown in Fig. 7.

IV. CONCLUSIONS

In this paper, we provide an initial proof of concept that
optimal control techniques may be employed to create an
improved controller for implementation in a prosthetic limb.
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TABLE I
TUNED K71 AND K2 TRANSFER FUNCTIONS FOR TESTED 1.
* *
[ To Ki K3 |
T fast 5.3¢07s°+1.2e0654+5.3¢06  1.7¢055°+1.7¢07s+3.5€05
0 5241.95+0.052 s2+41.7e075+3.5e05
Tslow 1.8¢0552+1.7€065+1.2¢05  4.8e05s°+5.0e055+3.1€04
0 5241.9e065+1.2e¢05 5244.6e045+0.036

20s2+30s+10.2
s24+61s+31

—252-335—3.8
s2+4+16s+1.9

Tfastfslow
0

Responses to Step Input Responses to Impulse Input

— W impulse
— 3 g (fast)
. Step 2 —v (fast)
/ - (fast) 205 -Open Loop
€04 —v (fast) £ q (2nd order)
< / —— Open Loop < —v (2nd order)
o2ff / q (2nd order)
/ ——v (2nd order) ‘
0 1 2 3 0 1 2 3 7 5

Time (seconds)
Impulse (zoom)

Time (seconds)
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W Ssine 100
| m—t
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Fig. 5. Responses to step, impulse, and sinusoidal inputs for Hcp, and
To. The system Hcp, is consistent with the H¢y, described in Fig. 2, with
q as the response of Ho, and v as the response of Tp.
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Fig. 6. The output from K7, w1, and actuation signal ug required to

produce the outputs given in Fig. 5.
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Fig. 7. Left: The 2-norms of controller-generated signals w; and uso
for different inputs. These signals were generated for different T transfer
functions. Note that the plot on the right has a logarithmic scale for the
y-axis. Right: The minimum H norm of error for different Ty transfer
functions. Note that there is a logarithmic scale for the y-axis.

Two separate controllers can be added into a prosthesis-
user system in order to process user EMG data and prosthesis
output, and produce an actuation signal for the prosthesis and
feedback stimulation for the user. These controllers are tuned
by minimizing the H,, norm of the closed-loop system.

The current study assumes each component of the system
to be linear to demonstrate the feasibility of such an ap-
proach. However, in a real-life setting, these components can
be estimated from experimental data, and if nonlinear, can be
approximated to be linear with model uncertainty absorbing
the nonlinearities. That is, a set of systems can be specified
where the nominal model is linear and the uncertainty in
the set encompasses all systems that add nonlinearity to
the nominal model; then robust controller synthesis can be
employed for model matching in this framework. Future
work includes derivation of realistic models for H derived
from actual human data, P derived from physical laws, and
a Tp that approximates a healthy human system.
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